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1. INTRODUCTION 

W INJECTION or suction of fluid into the turbulent boundary 
layer has proved over the years to be an effective means of 
controlling the properties of fluid flowing over a surface. The 
result of this injection or suction of fluid is to modify the 
velocity and temperature distributions through the boundary 
layer so that the drag and the heat transfer are either reduced 
or increased. Most of the studies on this topic, however, deal 
with incompressible flow. 

The majority of the results on supersonic flow comes from 
the work of Squire and his students at Cambridge University 
[l-S]. These results are given for Mach mtmbers up to 3.6 at 
various injection rates. Full tables of measured profiles are 
presented and expressions for the law of the wall and the law 
of wake are proposed. As for the incompressible case, the 
law of the wall is obtained by straightforward application of 
the mixing-length theory [l]. Unfortunately, in those works 
the skin-friction coefficients are evaluated by means of the 
momentum-integral equation which tends to be very inac- 
curate, thus definitive checks on the proposed law of the wall 
are impossible. 

In a previous paper [6], the present author has proposed 
a skin-friction equation for transpired incompressible tur- 
bulent boundary layers. This equation is much less sensitive 
than the momentum-integral equation to small variations in 
the flow parameters so providing much more reliable results. 
The aim of this work is to extend this skin-friction equation 
to compressible flow. 

The approach of transforming a compressible turbulent 
boundary layer into a corresponding incompressible flow has 
been pursued by several authors in the past with reasonable 
success. The underlying idea is to reduce the complex system 
of partial differential equations which governs the motion of 
a compressible flow into a simpler system, such as the system 
of equations for an incompressible flow. Solutions of the 
simpler system can then be transformed back to predict 
the behaviour of the solutions of the complex one. This 
procedure, however, still presents the diSlcult problem of 
selecting the right transformation parameters. An alternative 
approach is to use the concept of generalized velocity. Using 
the assumption that the mixing length is proportional to the 
wall distance and that the shear stress in the fluid is constant 
and equal to its value at the wall, Van Driest [7] solved the 
equations of motion and obtained, for an adiabatic flow 
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where 
J2 = (~-l)M~/(2+(y--l)M~). (2) 

Comparison of equation (1) with the well-known log- 
arithmic law of the wall for incompressible flow shows that 
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the compressibility effects can be accounted for if the incom- 
pressible velocity profile is replaced by the generalized 
velocity, u*, defined by 
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The above equation is normally referred to as the Van 
Driest transformation. Of course, in the limit as M + 0 equa- 
tion (1) reduces to the incompressible flow case. The wake 
function does not appear in equation (1) due to the hypoth- 
esis that the mixing length is given by I = Ky throughout the 
boundary layer. However, Maise and McDonald [8] have 
shown that solution (1) can be extended to a boundary layer 
with a finite wake if one writes 

I&-u* = u, ( - $5 + :(2--w(y/6)) 
> 

(4) 

where w(y/S.) is Coles’ wake function. 
Squire [l] used the same procedure as Van Driest to derive 

a law of the wall for transpired compressible turbulent 
boundary layers ; but the result is in the form of an elliptic 
integral and so cannot be integrated exactly. This feature of 
his solution hampered any attempt by him of obtaining a 
skin-friction eouation. For this reason. it was decided to 
apply Van Drie& transformation directly to the expressions 
derived in ref. [6] to obtain a simple set of expressions which 
yield a skin-friction equation. This procedure, although not 
theoretically rigorous, is expected, together with adequate 
modifications in the incompressible results, to give good 
results. 

2. THE MOMENTUM-INTEGRAL EQUATION 

Values of the skin friction are normally evaluated in the 
literature by means of the momentum-integral equation 
which reads 

~=!g-F- & $(2+Lu;) (5) 
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where Fis the injection rate (= pW V,/p,u,), H the boundary 
layer shape parameter and 6 the momentum thickness. 

The difficulty in using equation (5) lies in the fact that C, 
is normally much smaller than the individual terms on the 
right-hand side and so is the result of a small difference 
between large numbers. This makes equation (5) strongly 
dependent on the accuracy of the experimental data. Unfor- 
tunately, this difficulty is not easily rectified due to the scatter 
in the experimental data. For example, most of the oorous 
surfaces which are commercially available give an accuracy 
of only f 7% in F. This causes an unavoidable variation in 
the injection velocity along the surface which greatly affects 
the results yielded by equation (5). This problem is further 
aggravated by the magnification of the scatter in the measure- 
ments by the differentiation [2]. In fact it is possible that the 
errors in dtI/dx, in F and in the pressure-gradient term are 
greater than 0.0002. Consequently, equation (5) is subject to 
large random errors. 
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NOMENCLATURE 

constant in law of the wall 
skin-friction coefficient 
skin-friction coefficient for unblown case 
injection rate, pwv,/p,u, 
boundary layer shape parameter 
Von Karman’s constant 
Mach number 
pressure 
Reynolds number 
tangential velocity 
friction velocity 
u,(arcsin 5)/t 
generalized velocity 
normal velocity 
Cartesian coordinates 
Coles’ function. 

Greek symbols 
Y ratio of specific heats 

boundary layer thickness 
i wall layer thickness 
0 momentum thickness 

;2 
kinematic viscosity 
(Y-l)W/(2+(y-1)MZ) 

n wake profile parameter 
i wake profile parameter due to the injection 
P density. 

Subscripts 
W wall condition 
wo overlap region condition 
lx free-stream condition. 

3. THE SKIN-FRICTION EQUATION FOR 
COMPRESSIBLE TRANSPIRED 

TURBULENT BOUNDARY LAYERS 

In this section equation (4) is extended to the case with 
transpiration. This is done by letting the right-hand side of 
this equation account for the blowing effects, that is, by 
replacing the logarithmic defect layer solution by a bilog- 
arithmic defect layer solution such as that derived in ref. [6]. 
Note, however, that now, due to the compressibility, the 
thermodynamic properties of the flow change across the 
boundary layer and hence parameters such as Mach number, 
Reynolds number, and the normal velocity, need to be suit- 
ably defined. In this work, M is the external Mach number, 
R the Reynolds number based on properties evaluated at the 
wall temperature, the density used in the definition of the 
friction velocity is evaluated at the wall condition and a 
characteristic normal velocity, v,,, is defined in the overlap 
region. 

The defect layer solution for a transpired incompressible 
turbulent boundary layer is shown in ref. [6] to be given by 

U,-U=Uu, ( Gln$ + %(2--w(y/S)) 
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+v,($ln’~- (&ln%+&)ln~ 

+ +v(y:@) 
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Hence, it follows from equation (3) that the defect layer 
solution for a compressible transpired flow is 

u:,-u* = f(r,u~>r&“,s,V,). (7) 
Parameters A, K and E are considered here to be identical 

to those defined in ref. [6]. The parameter v, in equation (6) 
is replaced by a,, in equation (7) because in a compressible 
flow the normal velocity varies across the boundary layer to 
order unity and so a reference velocity needs to be suitably 
chosen. Since solution (7) must match the wall layer solution, 
it is assumed that 

0,” = characteristic normal velocity in the overlap region. 

Matching arguments similar to those in ref. [6] applied to 
solution (7) and to the wall layer solution yield the skin- 
friction equation for compressible transpired turbulent 
boundary layers as 

U, = 51,” + 
K 8 

where, u, = u,(arcsin 5)/t and the parameters are the same 
as in the incompressible case, that is 

7[ = 0.55 (9) 

i = -1,95ln(v,,/u,)-3.1 (10) 

A =5.0-512&,/u,). (11) 

The solution of the system defined by equations Q-(11) 
determines Cr for given values of M, u,, 6 and v,,. The 
characteristic normal velocity in the overlap region, v,,, is 
determined assuming that the matching between the wall and 
defect regions is performed at y/6 = 0.1. Therefore 

v, = o(O.1). (12) 

Values of v,, based on conditions at the wall, and on 
conditions at the edge of the boundary layer, were also tested 
on equation (8). These conditions give results which are 
clearly inconsistent. Predictions of C, using equation (8) 
should then be compared to experimental results. However, 
due to the difficulty in obtaining reliable experimental values 
for the skin-friction velocity, it is important to describe the 
criterion adopted in this work to select the experimental data. 
The method used was in fact that proposed by Squire [l]. 
Values of Cr obtained from the experiments of Squire [2] and 
of Jeromin [5] were plotted in the form C,/C, against 2F/Cn, 
where C,,, is the skin-friction coefficient for the unblown case 
and F the injection rate. Next these points were enclosed by 
scatter bands based on the experimental accuracy. The mean 
of these bands was then considered to be the actual variation 
of C,/C,. The appropriate values of C, were then taken from 
Fig. 1 for given values of F and Cro. 

The experimental details are summarized in Table 1. Skin- 
friction values predicted by equation (8) are plotted in Figs. 
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FIG. 1. Mean values of Cr. 
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Table 1. Flow conditions according to refs. [2, 5’1 

FC F M Rjmx IO-' 

1 0.0 1.80 1.100 
2 0.0013 1.80 1.100 
3 0.0025 1.80 1.100 
4 0.003 1 1.80 1.100 
5 0.0 2.50 0.659 
6 0.0013 2.50 0.659 
7 0.0024 2.50 0.659 
8 0.0036 2.50 0.659 
9 0.0 3.60 0.530 

10 0.00065 3.60 0.530 
11 0.0012 3.60 0.530 
12 0.0021 3.60 0.530 

2(a)-(c) against values of Rg, 8 the momentum thickness, 
for M = 1.8, 2.5 and 3.6. These figures also show values of 
C, obtained from Squire [2] and from Fig. 1. The overall 
agreement for a Mach number of 3.6 is very good. For 
Mach numbers of 1.8 and 2.5, the results obtained through 
equation (8) and Fig. 1 agree quite well. Equation (5), 
however, gave results which seem to be higher than the actual 
values of C,. One of the interesting features of the analysis 
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FIG. 2(a). Predictions of C, for M = 1.8 : x , equation (8) ; 
0, Squire’s results; +, Fig. 1. 
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FIG. 2(b). Predictions of C, for M = 2.5 : x , equation (8) 
0, Squire’s results; +, Fig. 1. 
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FIG. 2(c). Predictions of C, for M = 3.6 : x , equation (8) ; 
0, Squire’s results ; + , Fig. 1. 

carried out so far is that equation (8) has been derived using 
only physical arguments and the results of ref. 161. Thus none 
of the parameters in equation (8) have been determined by 
a direct analysis of the experimental data for compressible 
flow. This yields an independent method which can be used 
to check the results given by equation (5). The velocity pro- 
files were obtained substituting the predicted values of Cr 
into equation (7). The results are shown in Figs. 3(a)-(c). 
For the lowest Mach number the theoretical predictions are 
reasonable. Unfortunately as the Mach number increases the 
agreement becomes systematically poorer, in particular for 
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FIG. 3(a). Velocity proglees for A4 = 1.8: x, equation (7); _ . 
0, expenmental results. 
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FIG. 3(b). Velocity profiles for M = 2.5 : x , equation (7) ; 
0, experimental results. 

the higher injection rates. This is clear indication that the 
strength of the wake function due to the transpiration does 
vary with Mach number. As a matter of fact, Figs. 3(a)-(c) 
show that even the wake profile for the unblown results 
depends strongly on Mach number as pointed out by Squire 
[3]. Despite that values of z and i identical to those in ref. 
[6] have been opted for in this work. Indeed, due to the 
uncertainties in the experimental results, it becomes very 
difficult to draw firm conclusions about the actual values of 
A, ?I and ic. Hence, it seemed sensible to assume that the 
expressions derived for parameters A, H and ?i for the incom- 
pressible case would still hold for the compressible case. 

4. FINAL REMARKS 

In this work, a new expression is introduced for the evalu- 
ation of the skin-friction for compressible turbulent bound- 
ary layers with blowing. This expression gives much more 
consistent results than the momentum-integral equation and 
excels for its simplicity. The difficulty with the present for- 
mulation is that, in defining ir, one is also defining both the 
skin-friction equation and the defect layer solution. Thus, 2 
has to be carefully determined so that both expressions pro- 
vide good results. Unfortunately, the scarcity of experimental 
results makes this determination impossible to accomplish 
at this stage and so it was here decided to use values of ii 
taken from the incompressible case. This has not provided 
good results for the defect layer solution. Future work may 
even show that such a compromise in the determination of 
ff cannot be achieved and that some modifications are needed 
in the theory. However, this author is quite confident that, 
as more experimental results become available, expressions 
similar to equations (7) and (8) will be developed which will 
give good results. 
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FIG. 3(c). Velocity profiles for M = 3.6: x , equation (7) : 
0, experimental results. 
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